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1 Hierarchical Bayesian Models and the James-Stein Esti-
mator

1.1 Examples of hierarchical Bayesian models

Last time we talked about hierarchical Bayes models

Example 1.1. In our baseball model last time, we had the hyperparameters α, β with
Θ | α, β ∼ Beta(α, β) and Xi | Θi ∼ Binom(ni,Θi).

This was a directed graphical model with

p(γ, θ1, . . . , θm, x1, . . . , xm) = p(γ)

m∏
i=1

p(θi | γ)p(xi | θi).

We also discussed Markov chains with kernels Q(y | x); these had a stationary distri-
bution π which satisfies π(y) =

∫
Q(y | x)π(x) dx. A sufficient (but stronger) condition is

detailed balance, which requires that π(x)Q(y | x) = π(y)Q(x | y) for all x, y.
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One particularly useful algorithm for sampling in hierarchical models is the Gibbs
sampler, where we hold all the θi fixed except for one at a time and iteratively update our
θis as we go. Here is an example of where things can go wrong with the Gibbs sampler.

Example 1.2. Let Θ1,Θ2
iid∼ N(0, 1) and Xi | Θ

iid∼ N(Θ1 + Θ2, 1) for i = 1, . . . , n. If we
do this, for large n, we will get a very highly correlated posterior distribution:

If we reparameterize the problem with β1 = θ1 + θ2 and η2 = θ1 − θ2, the parameters are
much less dependent, so the Gibbs sampler will work better

Another issue would be when we have a bimodal distribution with the two modes having
disjoint supports. Then the Gibbs sampler will not be able to jump from 1 of these modes
to the other.
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This can be a general problem with MCMC.

Example 1.3 (Gaussian hierarchical model). Here is a Gaussian hierarchical model. Let

τ2 ∼ λ(τ2) (e.g. 1/τ2 ∼ Gamma), Θi | τ2
iid∼ N(0, τ2), and Xi | τ2,Θi

iid∼ N(Θi, 1) for
i = 1, . . . , d. The posterior mean is

E[Θi | X] = E[E[Θi | X, τ2] | X]

= E
[

τ2

τ2 + 1
Xi | X

]
=

(
E
[

τ2

1 + τ2
| X
])

︸ ︷︷ ︸
1−E[ζ|X]

Xi,

where ζ = 1
1+τ2

. We can think of this as an optimal shrinkage factor.

If we marginalize out Θ, we get Xi | τ2
iid∼ N(0, 1 + τ2). If we think of this as just a

problem of estimating τ2, the sufficient statistic is

‖X‖2

d
| τ2 ∼ 1 + τ2

d
χ2
d

= (1 + τ2, 2(1 + τ2)2/d),

where this notation means it is some distribution with mean 1+τ2 and variance 2(1+τ2)2/d.

The likelihood for τ2 has a sharp peak near τ2 = ‖X‖2
d − 1 or, equivalently, near ζ = d

‖X‖2
(for large d).

For any reasonably open-minded prior (not prior 3 in the below figure), E[ζ | X] ≈ d
‖X‖2 .

So

E[Θi | X] ≈
(

1− d

‖X‖2

)
Xi.

The moral is that if the prior doesn’t matter so much, we can just try to estimate ζ
directly from the data. This motivates the idea of empirical Bayes models: Write down
a hierarchical model and just try to estimate a parameter like ζ using the data. In this
way, we don’t need to use the Gibbs sampler.
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1.2 The James-Stein estimator

Empirical Bayes is a hybrid approach in which we treat the hyperparameters as fixed and
treat the paramters as random.

Example 1.4. Think of τ2 (or of ζ) as a fixed parameter, so we have Xi
iid∼ N(0, 1 + τ2)

and ‖X‖2 ∼ (1 + τ2)χ2
d. Then the UMVU estimator for τ2 is

τ̂2 =
‖X‖2

d
− 1, which gives ζ̂ =

1

1 + τ̂2
=

d

‖X‖2
.

This is not great because it can be negative. What if we took the UMVUE for ζ? Then
we get the James-Stein estimator.

James and Stein proposed that for d ≥ 3,

δJS(X) =

(
1− d− 2

‖X‖2

)
X.

The interpretation is that d−2
‖X‖2 is the UMVU estimator for ζ:

Proposition 1.1. If Y ∼ χ2
d = Gamma(d/2, 2) with d ≥ 3, then E[1/Y ] = 1

d−2 .

Proof.

E
[

1

Y

]
=

∫ ∞
0

1

y

1

2d/2Γ(d/2)
yd/2−1e−y/2 dy

=
2(d−2)/2Γ((d− 2)/2)

2d/2Γ(d/2)

∫ ∞
0

1

2(d−2)/2Γ(d/2)
y(d−2)/2−1e−y/2 dy

=
1

2
· 1

(d− 2)/2

=
1

d− 2
.

Using the proposition,

‖X‖2

1 + τ2
∼ χ2

d =⇒ ζ−1 E
[

1

‖X‖2

]
=

1

d− 2
=⇒ ζ̂ =

d− 2

‖X‖2
.

But the James-Stein estimator is more interesting than just this. Going back to a non-
Bayesian model, suppose Xj ∼ N(θj , 1) with θ ∈ Rd. Then for d ≥ 3, X is inadmissible as
an estimator of θ for the MSE. Say we have n observations:
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Proposition 1.2 (James-Stein1). Let Xi
iid∼ Nd(θ, σ

2Id) for i = 1, . . . , n with known σ2 >
0. For

δJS =

(
1− (d− 2)σ2/n

‖X‖2

)
X,

MSE(θ, δJS) < MSE(θ,X)

for all θ ∈ Rd.

This says that if we have a bunch of unrelated experiments and we pool the observations
together, we can get a better estimator for all of them by combining our observations.

Remark 1.1. We don’t need to shrink around 0. For any θ0 ∈ Rd,

δ(X) = θ0 +

(
1− d− 2

‖X − θ0‖2

)
(X − θ0)

renders X itself inadmissible for the mean squared error.

Next time, we will prove this result using Stein’s lemma.

1This shocking result came out in the 50s, and no one was prepared for it.
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