Statistics 210A Lecture 11 Notes

Daniel Raban

September 30, 2021

1 Hierarchical Bayesian Models and the James-Stein Esti-
mator
1.1 Examples of hierarchical Bayesian models

Last time we talked about hierarchical Bayes models
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Example 1.1. In our baseball model last time, we had the hyperparameters «, 5 with
© | a, f ~ Beta(e, 8) and X; | ©; ~ Binom(n;, ©;).

This was a directed graphical model with

m

i=1

We also discussed Markov chains with kernels Q(y | x); these had a stationary distri-
bution 7 which satisfies 7(y) = [ Q(y | )w(z) dz. A sufficient (but stronger) condition is
detailed balance, which requires that 7(z)Q(y | z) = 7(y)Q(x | y) for all z,y.



One particularly useful algorithm for sampling in hierarchical models is the Gibbs
sampler, where we hold all the 6; fixed except for one at a time and iteratively update our
0;s as we go. Here is an example of where things can go wrong with the Gibbs sampler.

Example 1.2. Let ©1,0, i N(0,1) and X; | © i N(©O; +09,1) fori=1,...,n. If we

do this, for large n, we will get a very highly correlated posterior distribution:

If we reparameterize the problem with 51 = 61 + 0 and 12 = 01 — 05, the parameters are
much less dependent, so the Gibbs sampler will work better

AN

1

Another issue would be when we have a bimodal distribution with the two modes having
disjoint supports. Then the Gibbs sampler will not be able to jump from 1 of these modes
to the other. B
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This can be a general problem with MCMC.

Example 1.3 (Gaussian hierarchical model). Here is a Gaussian hierarchical model. Let
72 ~ A(72) (e.g. 1/72 ~ Gamma), ©; | 72 % N(0,72), and X; | 72,0; * N(©;,1) for
1 =1,...,d. The posterior mean is

E[©; | X] =E[E[6; | X,77] | X]
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If we marginalize out O, we get X; | 72 ~ N (0,1 + 72). If we think of this as just a
problem of estimating 72, the sufficient statistic is
X012 5 1472
T 1T

= (1+7%2(1+7%)?%/d),

where this notation means it is some distribution with mean 1+72 and variance 2(1+72)2/d.

where ( = We can think of this as an optimal shrinkage factor.

The likelihood for 72 has a sharp peak near 2= 7”)2“2 — 1 or, equivalently, near ¢ = I )?”2
(for large d).
For any reasonably open-minded prior (not prior 3 in the below figure), E[¢ | X] ~ I )?”2 .
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The moral is that if the prior doesn’t matter so much, we can just try to estimate ¢
directly from the data. This motivates the idea of empirical Bayes models: Write down
a hierarchical model and just try to estimate a parameter like ( using the data. In this
way, we don’t need to use the Gibbs sampler.



1.2 The James-Stein estimator

Empirical Bayes is a hybrid approach in which we treat the hyperparameters as fixed and
treat the paramters as random.

Example 1.4. Think of 72 (or of ¢) as a fixed parameter, so we have X; Y N(0,1+72)
and || X|]|2 ~ (1 +7%)x3. Then the UMVU estimator for 72 is

X|? ~ 1 d
72 = HdH — 1, which gives (
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This is not great because it can be negative. What if we took the UMVUE for {? Then
we get the James-Stein estimator.

James and Stein proposed that for d > 3,

s = (1- 15 ) .

The interpretation is that ﬁ){;”% is the UMVU estimator for (:

Proposition 1.1. If Y ~ x3 = Gamma(d/2,2) with d > 3, then E[1/Y] = ﬁ.
Proof.
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But the James-Stein estimator is more interesting than just this. Going back to a non-
Bayesian model, suppose X; ~ N(6;,1) with § € R, Then for d > 3, X is inadmissible as
an estimator of # for the MSE. Say we have n observations:
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Proposition 1.2 (James-Stein'). Let X; ~ Ng(0,021;) fori=1,...,n with known o? >
0. For ( ey
d—2)o*/n\ —
X112

MSE(0, §;5) < MSE(#, X)
for all 6 € R,

This says that if we have a bunch of unrelated experiments and we pool the observations
together, we can get a better estimator for all of them by combining our observations.

Remark 1.1. We don’t need to shrink around 0. For any 6 € R?,

5(X) = 6y + <1 - ||Xd—_920H2> (X — 6o)

renders X itself inadmissible for the mean squared error.

Next time, we will prove this result using Stein’s lemma.

' This shocking result came out in the 50s, and no one was prepared for it.
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